866 research outputs found

    Calibration of transonic and supersonic wind tunnels

    Get PDF
    State-of-the art instrumentation and procedures for calibrating transonic (0.6 less than M less than 1.4) and supersonic (M less than or equal to 3.5) wind tunnels were reviewed and evaluated. Major emphasis was given to transonic tunnels. Continuous, blowdown and intermittent tunnels were considered. The required measurements of pressure, temperature, flow angularity, noise and humidity were discussed, and the effects of measurement uncertainties were summarized. A comprehensive review of instrumentation currently used to calibrate empty tunnel flow conditions was included. The recent results of relevant research are noted and recommendations for achieving improved data accuracy are made where appropriate. It is concluded, for general testing purposes, that satisfactory calibration measurements can be achieved in both transonic and supersonic tunnels. The goal of calibrating transonic tunnels to within 0.001 in centerline Mach number appears to be feasible with existing instrumentation, provided correct calibration procedures are carefully followed. A comparable accuracy can be achieved off-centerline with carefully designed, conventional probes, except near Mach 1. In the range 0.95 less than M less than 1.05, the laser Doppler velocimeter appears to offer the most promise for improved calibration accuracy off-centerline

    Bubble transport by electro-magnetophoretic forces at anode bottom of aluminium cells

    Get PDF
    Electrically conducting and nonconducting particles and bubbles experience additional forcing in a liquid which carries electric current. These so called electro-magnetophoretic forces are well known in metallurgical applications, like metal purification in vacuum-arc remelting, electro-slag processes, impurity removal or concentration change in special castings. However, the effect of electro-magnetophoretic forces has never been considered for aluminium cells where the gas bubbles evolving in the liquid electrolyte are surrounded by an electric current and significant magnetic fields. We present models to estimate the effect of electric current flow in the vicinity of the bubbles and the additional pressure distribution resulting from the magnetic forces in the surrounding liquid electrolyte. According to the estimates, this force becomes important for bubbles exceeding 2 mm in size, and could be sufficient to overcome the typical drag force associated with electrolyte flow thereby opposing motion of the bubble along the base of the anode when it is inclined at a slight angle. The effect could explain certain features of the anode effect onset. Mathematical models and numerical results are presented and a further implementation in the general MHD code for the aluminium cell design is discussed

    Andromeda's Parachute: A Bright Quadruply Lensed Quasar at z=2.377

    Get PDF
    We present Keck Cosmic Web Imager spectroscopy of the four putative images of the lensed quasar candidate J014709+463037 recently discovered by Berghea et al. (2017). The data verify the source as a quadruply lensed, broad absorption-line quasar having z_S = 2.377 +/- 0.007. We detect intervening absorption in the FeII 2586, 2600, MgII 2796, 2803, and/or CIV 1548, 1550 transitions in eight foreground systems, three of which have redshifts consistent with the photometric-redshift estimate reported for the lensing galaxy (z_L ~ 0.57). By virtue of their positions on the sky, the source images probe these absorbers over transverse physical scales of ~0.3-21 kpc, permitting assessment of the variation in metal-line equivalent width W_r as a function of sight-line separation. We measure differences in W_r,2796 of <40% across all sight-line pairs subtending 7-21 kpc, suggestive of a high degree of spatial coherence for MgII-absorbing material. W_r,2600 is observed to vary by >50% over the same scales across the majority of sight-line pairs, while CIV absorption exhibits a wide range in W_r,1548 differences of ~5-80% within transverse distances less than ~3 kpc. J014709+463037 is one of only a handful of z > 2 quadruply lensed systems for which all four source images are very bright (r = 15.4-17.7 mag) and are easily separated in ground-based seeing conditions. As such, it is an ideal candidate for higher-resolution spectroscopy probing the spatial variation in the kinematic structure and physical state of intervening absorbers.Comment: Submitted to ApJL. 9 pages, 3 figures. Uses aastex61 forma

    Rapid measurement of antituberculosis drug activity in vitro and in macrophages using bioluminescence

    Get PDF
    OBJECTIVES: Tuberculosis drug development is hampered by the slow growth of Mycobacterium tuberculosis. Bioluminescence, light produced by an enzymatic reaction, constitutes a rapid and highly sensitive measurement of cell metabolic function that can be used as an indirect marker of cell viability in drug screening assays. The aim of this work was to validate and standardize the use of luminescent M. tuberculosis strains to test the activity of antibacterial drugs in vitro and inside macrophages in a 96-well format. METHODS: We have used strains that express the bacterial lux operon and therefore do not require exogenous substrate to produce light, as well as strains expressing the firefly luciferase that need luciferin substrate. Results were compared with those obtained using the resazurin reduction assay and cfu plating. RESULTS: Using bioluminescence we were able to reduce the time required to measure the MIC and bactericidal concentrations of antimicrobials to just 3 and 6 days, respectively. Furthermore, antibacterial activity against intracellular mycobacteria was detected within 2 days post-infection. Results were comparable to those obtained by conventional methods. CONCLUSIONS: We have developed a simple and rapid method for screening antimycobacterial drugs in culture and in macrophages. The use of autoluminescent bacteria also facilitates the determination of growth and inhibition kinetics. The method is cost-effective, can easily be adapted to a larger scale and is amenable to automation. Current efforts are directed towards applying this technology to drug screening in vivo
    corecore